

Silanol: A Traceless Directing Group for Pd-Catalyzed *o*-Alkenylation of Phenols

Chunhui Huang, Buddhadeb Chattopadhyay, and Vladimir Gevorgyan*

Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, United States

Supporting Information

ABSTRACT: A silanol-directed, Pd(II)-catalyzed C–H alkenylation of phenols is reported. This work features silanol, as a novel traceless directing group, and a directed o-C–H alkenylation of phenols. This new method allows for efficient synthesis of diverse alkenylated phenols, including an estrone derivative.

rtho-Alkenyl phenols are important building blocks for **O**synthetic organic chemistry.¹ Traditionally, these synthons can be assembled via a combined Claisen rearrangement of O-allylphenols to C-allylphenols followed by a transition metalcatalyzed double bond isomerization process (eq 1).² This method is not general, as the Claisen rearrangement may produce a mixture of *ortho-* and *para-*allylphenols. Besides, the stereoselectivity of the isomerization step is ambiguous. Another common route to ortho-alkenyl phenols involves consecutive ortho-halogenation/Mizoroki-Heck cross-coupling reaction³ with alkenes (eq 2). The requisite of extra *ortho*-prefunctionalization step and concomitant overbromination byproducts significantly limits the wide application of this approach.⁴ More directly, orhto-alkenylation reaction of phenols with terminal alkynes can be promoted by a Lewis acid, such as SnCl₄.⁵ An obvious drawback of this method is an employment of stoichiometric amounts⁶ of a toxic tin reagent. Herein, we wish to report a silanol group-directed Pd-catalyzed *ortho* C–H alkenylation of phenols to produce diverse ortho-alkenyl derivatives in good to high yields (eq 3).

Transition metal-catalyzed directed $C-H^7$ alkenylaton⁸ reactions have emerged as attractive alternative to the Mizoroki–Heck reaction. A directing group is usually introduced to control the regioselectivity as well as to enhance the

reactivity of the reaction.⁹ We were intrigued by the possibility to develop a method that would employ an easily removable directing group at the phenol, which would allow for a general synthesis of alkenylated phenols.^{10,11} Recently, we reported a traceless/modifiable silicon-tethered directing group¹² (PyDipSi) for *ortho*-acyloxylation and halogenation of arenes.¹³ Hence, we envisioned that employment of a temporary silicontethered directing group for phenols might be beneficial as it can efficiently be removed under mild conditions. In a recent report, Yu disclosed an elegant hydroxyl-directed ortho-C-H alkenylation of β -phenethylalcohols en route to alkenylaed arenes and/or benzopyrans (eq 4).^{14,15} Inspired by the successful alcohol-directed C-H functionalization reactions^{14,15} and efficient silicon-tethered directing group employment in C-H functionalizations,¹³ we hypothesized that silanol may serve as an ideal easily removable directing group for C-H alkenylation of phenols.16

$$\begin{array}{c|c} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

To test this hypothesis, silanol¹⁷ **1a** (1 equiv) was treated with butyl acrylate (**2a**, 2 equiv) under the conditions employing amino acid-derived ligand developed by Yu¹⁴ (10 mol % Pd-(OAc)₂, 20 mol % (+)menthyl(O₂C)-Leu-OH (**L1**), 1 equiv Li₂CO₃, 4 equiv AgOAc, in C₆F₆ at 100 °C). To our delight, the desired *ortho*-alkenylated product **3a** was formed in 52% NMR yield (Table 1, entry 1). Solvent optimization indicated PhCF₃ to be similarly efficient (entry 2), whereas employment of other solvents, such as toluene, dioxane, THF, *t*-AmylOH, and DMF gave poor yields. Finally, switching to DCE improved the yield of the reaction (78% NMR yield, entry 7).

Next, the removal of the silanol directing group was examined. Expectedly, desilylation of **3a** with TBAF proceeded uneventfully, producing the unprotected phenol **4a** in 84% yield (eq 5) or in 66% yield over two steps. It deserves mentioning that better efficiency was achieved by carrying out two steps, C–H alkenylation/desilylation, in *semi-one-pot* fashion¹⁸ (Table 2, entry 1).

 Received:
 May 28, 2011

 Published:
 July 18, 2011

ACS Publications © 2011 American Chemical Society

 Table 1. Solvent Screening for Silanol-Directed

 Alkenylation^a

entry	solvent (0.1 M)	conversion,% ^b	yield, % ^c
1	C_6F_6	77	52
2	PhCF ₃	79	50
3	PhMe	43	24
4	dioxane	18	<3
5	THF	4	<3
6	t-AmylOH	26	<3
7	DCE	90	78
8	DMF	55	0
a^{a} 1a/2a = starting ma	1: 2, $L1 = (+)$ menthyl aterial 1a measured by C	(O ₂ C)-Leu-OH. ^b Co GC/MS. ^{c 1} H NMR yie	nsumption of ld.

After developing the semi-one-pot procedure for the Pdcatalyzed silanol-directed C-H alkenylation/deprotection sequence, the scope of this new method was investigated. Table 2 summarizes olefinations of various phenol-derived silanols with butyl acrylate (2a) to produce the corresponding 2-hydroxy butyl cinnamates 4. It was found that diverse alkyl-, methoxy-, trifluoromethoxy-, chloro-, and fluoro-substituents (entries 1-5, 8-11) were tolerated well under these reaction conditions. Moreover, 5-indanol and tetrahydro-2-naphthol reacted smoothly to afford the olefinated phenols in good to excellent yields (entries 6 and 7). Notably, meta-substituted substrates (entries 2-4) reacted regioselectively at the sterically less hindered C-H site. In general, electron-rich phenols gave better yields of the olefinated products compared to their electrondeficient counterparts. Remarkably, in contrast to most of the reported C-H alkenylation reactions,¹⁹ this Pd(II)-catalyzed olefination reaction is monoselective. Most likely, the bulky tertbutyl groups at the silanol moiety prevent orientation of the silanol directing group toward the less hindered C-H site, thus, effectively stopping the reaction at the monoalkenylation stage.

Next, we turned our attention to the scope of olefins. It was found that a wide range of electron-deficient alkenes could be successfully employed in this transformation (Table 3). Thus, vinylsulfonate **2b** and vinylsulfone **2c** readily reacted with silanol **1e** to give the olefinated products in very good yields (entries 1, 2). Acrolein (**2d**) and alkyl vinyl ketones **2e** and **2f** are also capable reactants in this olefination reaction (entries 3–5). Moreover, styrene and its derivatives, smoothly reacted with **1e** to give (*E*)-2-styrylphenols **4q**–**4t** in reasonable yields (entries 6–9). 1,1-Disubstituted acrylate **2k** reacted with **1e** to give expected product **4u**,²⁰ along with its isomer **4v** in 45% and 39% NMR yields, respectively.^{9b}

Furthermore, the reaction of **1e** with diethyl maleate (**2l**) under the standard reaction conditions produced alkenylated product **5**, which upon desilylation/cyclization, led to the formation of lactone **6** in 58% yield (eq 6).²⁰ It should be mentioned that this example represents the first synthesis of a

entry	substrate		product		yield, %ª
1	O. 'Bu Si-'Bu OH	1a	CO2 ⁿ Bu	4a	72
2	Me Si-'Bu OH	1b	Me OH CO ₂ "Bu	4b	94
3	MeO Si-'Bu OH	1c	MeOOH CO2"Bu	4c	97
4	CI O Si-IBU OH	1d	CI OH CO2 ⁿ Bu	4d	53 ^b
5	Me Me Me	1e	Me OH Me CO ₂ "Bu	4e	97
6	O. j ^{Bu} Si- ⁱ Bu OH	1f	OH CO2"Bu	4f	88 ^b
7	O.,'Bu Si-'Bu OH	1g	OH CO2 ⁿ Bu	4g	97
8	MeO OH	1h	MeO CO2"Bu	4h	81
9	'Bu 'Bu 'Bu OH	1i	™Bu CO₂″Bu	4i	89
10	F O. 'Bu Si-'Bu OH	1j	F CO2"Bu	4j	58 ^b
11		1k	F ₃ CO ^{OH} CO ₂ ⁿ Bu	4k	52 ^b

^{*a*} Isolated yield. ^{*b*} The yield was measured by ¹H NMR analysis using CH₂Br₂ as internal standard.

benzofuranone from a simple phenol featuring a C–H activation strategy.

Finally, an application of this novel alkenylation methodology on the olefination of a more complex substrate estrone was tested. Thus, the corresponding silanol 7 underwent a smooth alkenylation/desilylation reaction sequence to produce the olefinated estrone 8 as a single regioisomer in 89% yield (eq 7).²¹ This example showcases the viability of employment of this

Table 3. Alkene Scope for Silanol-Directed Alkenylation

entry	substrate		product		yield, %ª
1	o S OPh	2b	Me OH O Me S OPh	41	96
2	,0 S Et	2c	Me OH Me S'Et	4m	87 ^b
3	СНО	2d	Me OH Me H	4n	70 ^b
4	Me	2e	Me OH Me Me	40	67 ^b
5		2f	Me OH Me	4p	69 ^b
6	Ph	2g	Me OH Me Ph	4q	64 ^{c,d}
7	<pre></pre>	2h	Me OH Me F	4r	79
8	C ₆ F ₅	2i	Me OH Me C ₆ F ₅	4s	83
9	NO ₂	2j	Me OH Me NO ₂	4t	66
10	Me CO2 ⁿ Bu	2k	Me OH Me Me CO ₂ /'Bu 4u, 45% ^d 4v,	39%d	H `CO ₂ ″Bu

 a Isolated yield. b Alkene 2 (4 equiv), Boc-Val-OH (20 mol %) as the ligand, 110 °C. c Styrene (4 equiv), 120 °C. d $^1{\rm H}$ NMR yield.

method for a late-stage modification of complex phenol-containing bioactive molecules toward a diversity-oriented drug discovery.²²

In summary, we have shown that the di-*tert*-butylsilanol can serve as a new and efficient directing group for the palladiumcatalyzed *ortho*-alkenylation of phenols. Employment of this directing group is very convenient as it can easily be removed under mild conditions. A synthetic usefulness of this novel alkenylation method was further demonstrated in the efficient synthesis of benzofuranone and alkenylated estrone derivative.

ASSOCIATED CONTENT

Supporting Information. Detailed experimental procedures and characterization data for all new compounds. This material is available free of charge via the Internet at http://pubs. acs.org.

AUTHOR INFORMATION

Corresponding Author vlad@uic.edu

ACKNOWLEDGMENT

We thank the National Institutes of Health (GM-64444) for financial support of this work.

REFERENCES

(a) Koehler, K.; Gordon, S.; Brandt, P.; Carlsson, B.; Backsbro-Saeidi,
 A.; Apelqvist, T.; Agback, P.; Grover, G. J.; Nelson, W.; Grynfarb, M.;
 Farnegardh, M.; Rehnmark, S.; Malm, J. J. Med. Chem. 2006, 49, 6635.
 (b) Gan, F. F.; Chua, Y. S.; Scarmagnani, S.; Palaniappan, P.; Franks, M.;
 Poobalasingam, T.; Bradshaw, T. D.; Westwell, A. D.; Hagen, T. Biochem.
 Biophys. Res. Commun. 2009, 387, 741.(c) Botyanszki, J.; Shi, D.-F.; Roberts,
 C. D.; Schmitz, F. U. U.S. Pat. Appl. Publ. US 20070032488. (d) Finkelstein,
 B. L.; Benner, E. A.; Hendrixson, M. C.; Kranis, K. T.; Rauh, J. J.; Sethuraman,
 M. R.; McCann, S. F. Biorg. Med. Chem. 2002, 10, 599.

(2) For Claisen rearrangement of O-allylphenols to Callylphenols, see: (a) Martín Castro, A. M. Chem. Rev. **2004**, *104*, 2939. For examples of C-allylphenols to C-vinylphenols, see:(b) Gauthier, D.; Lindhardt, A. T.; Olsen, E. P. K.; Overgaard, J.; Skrydstrup, T. J. Am. Chem. Soc. **2010**, *132*, 7998.

(3) (a) Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. Jpn. 1971,

44, 581. (b) Heck, R. F.; Nolley, J. P., Jr. J. Org. Chem. 1972, 37, 2320.
(4) For an example on regioselective formation of halophenols, see: de Rege, F. M. G.; Buchwald, S. L. Tetrahedron 1995, 51, 4291.

(5) (a) Yamaguchi, M.; Hayashi, A.; Hirama, M. J. Am. Chem. Soc.
 1995, 117, 1151. (b) Kobayashi, K.; Yamaguchi, M. Org. Lett. 2001,
 3, 241.

(6) The developed catalytic version of this process (see ref 5b) is limited to vinylation reaction only.

(7) For general reviews on transition metal-catalyzed C-H activation of arenes, see: (a) Kakiuchi, F.; Chatani, N. Adv. Synth. Catal. 2003, 345, 1077. (b) Dick, A. R.; Sanford, M. S. Tetrahedron 2006, 62, 2439. (c) Godula, K.; Sames, D. Science 2006, 312, 67. (d) Yu, J.-Q.; Giri, R.; Chen, X. Org. Biomol. Chem. 2006, 4, 4041. (e) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. (f) Campeau, L.-C.; Stuart, D. R.; Fagnou, K. Aldrichimica Acta 2007, 40, 35. (g) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed. 2009, 48, 9792. (h) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074. (i) McGlacken, G. P.; Bateman, L. M. Chem. Soc. Rev. 2009, 38, 2447. (j) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890. (k) Ashenhurst, J. A. Chem. Soc. Rev. 2010, 39, 540. (l) Satoh, T.; Miura, M. Synthesis 2010, 3395. (m) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293.

(8) For reviews on transition metal-catalyzed C-H alkenylation of arenes, see: (a) Oestreich, M., Ed. The Mizoroki-Heck Reaction; John Wiley and Sons: Chicester, U.K., 2009. (b) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318. (c) Messaoudi, S.; Brion, J.-D.; Alami, M. Eur. J. Org. Chem. 2010, 6495. (d) Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173. (e) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094. (f) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev.

Journal of the American Chemical Society

2010, 110, 624. (g) Lyons, T. W.; Sanford, M. S. Chem. Rev. **2010**, 110, 1147. (h) Satoh, T.; Miura, M. Chem.—Eur. J. **2010**, 16, 11212.

(9) For examples of removable directing group assisted C-H activation, see: (a) Ihara, H.; Suginome, M. J. Am. Chem. Soc. 2009, 131, 7502. (b) García-Rubia, A.; Urones, B.; Gómez Arrayás, R.; Carretero, J. C. Chem.—Eur. J. 2010, 16, 9676. (c) García-Rubia, A.; Fernández-Ibáñez, M. Á.; Gómez Arrayás, R.; Carretero, J. C. Chem.— Eur. J. 2011, 17, 3567. (d) Dai, H.-X.; Stepan, A. F.; Plummer, M. S.; Zhang, Y.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 7222.

(10) The employment of a phenoxyl group as a directing group for C-H activation is less common since it would generate a highlystrained, four-membered metallacycle, see: Vicente, J.; Abad, J.-A.; Förtsch, W.; Jones, P. G.; Fischer, A. K. *Organometallics* **2001**, *20*, 2704.

(11) For o-arylation of phenols employing phosphorous-containing additives, see: (a) Bedford, R. B.; Coles, S. J.; Hursthouse, M. B.; Limmert, M. E. Angew. Chem., Int. Ed. 2003, 42, 112. (b) Bedford, R. B.; Limmert, M. E. J. Org. Chem. 2003, 68, 8669. (c) Oi, S.; Watanabe, S.-I.; Fukita, S.; Inoue, Y. Tetrahedron Lett. 2003, 44, 8665. For o-alkylation of phenols, see: (d) Lewis, L. N.; Smith, J. F. J. Am. Chem. Soc. 1986, 108, 2728. (e) Dorta, R.; Tongi, A. Chem. Commun. 2003, 760. (f) Carrión, M. C.; Cole-Hamilton, D. J. Chem. Commun. 2006, 4527. (g) Lewis, J. C.; Wu, J.; Bergman, R. G.; Ellman, J. A. Organometallics 2005, 24, 5737. For pioneering work regarding o-deuteration of phenols, see: (h) Lewis, L. N. Inorg. Chem. 1985, 24, 4433. For o-borylation of phenols employing a silicon-tethered directing group, see: (i) Boebel, T. A.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 7534.

(12) For early work on employment of removable silyl-directing group in Heck reaction, see: (a) Itami, K.; Mitsudo, K.; Kamei, T.; Koike, T.; Nokami, T.; Yoshida, J.-i. *J. Am. Chem. Soc.* **2000**, *122*, 12013. For a review, see: (b) Itami, K.; Yoshida, J.-i. *Synlett* **2006**, 157.

(13) (a) Chernyak, N.; Dudnik, A. S.; Huang, C.; Gevorgyan, V. J. Am. Chem. Soc. **2010**, *132*, 8270. (b) Dudnik, A. S.; Chernyak, N.; Huang, C.; Gevorgyan, V. Angew. Chem., Int. Ed. **2010**, *49*, 8729. (c) Huang, C.; Chernyak, N.; Dudnik, A. S.; Gevorgyan, V. Adv. Synth. Catal. **2011**, 353, 1285.

(14) Lu, Y.; Wang, D.-H.; Engle, K. M.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 5916.

(15) For hydroxyl group as a directing group, see also: (a) Terao, Y.; Wakui, H.; Satoh, T.; Miura, M.; Nomura, M. *J. Am. Chem. Soc.* **2001**, *123*, 7725. (b) Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Angew. Chem., Int. Ed. **1997**, *36*, 1740. (c) Wang, X.; Lu, Y.; Dai, H.-X.; Yu, J.-Q. J. Am. Chem. Soc. **2010**, *132*, 12203. (d) Lu, Y.; Leow, D.; Wang, X.; Engle, K. M.; Yu, J.-Q. Chem. Sci. **2011**, *2*, 967.

(16) To the best of our knowledge, there are no reports on employment of silanol as a directing group in C-H functionalization reactions.

(17) Silanols 1 were prepared in a semi-one-pot reaction of phenols with di-*t*-butylchlorosilane, followed by bromination and hydrolysis. See Supporting Information for details. For published two-step procedure, see: Petit, M.; Chouraqui, G.; Aubert, C.; Malacria, M. *Org. Lett.* **2003**, *5*, 2037.

(18) Upon completion of the first step, the mixture was filtered through a celite plug, concentrated and treated with TBAF solution in THF. See Supporting Information for details.

(19) For rare examples on monoselective alkenylation, see: (a) Shi, B.-F.; Zhang, Y.-H.; Lam, J. K.; Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. **2010**, 132, 460. (b) Wang, D.-H.; Engle, K. M.; Shi, B.-F.; Yu, J.-Q. Science **2010**, 327, 315. For not completely selective mono vs bisalkenylation, see: (c) García-Rubia, A.; Arrayás, R. G.; Carretero, J. C. Angew. Chem., Int. Ed. **2009**, 48, 6511. (d) Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. **2010**, 49, 6169. (e) Patureau, F. W.; Glorius, F. J. Am. Chem. Soc. **2010**, 132, 9982. (f) Mochida, S.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. **2011**, 76, 3024. See also refs 9b and 9d.

(20) The stereochemistry was determined by NOE experiments.

(21) (a) Edsall, A. B.; Mohanakrishnan, A. K.; Yang, D.; Fanwick, P. E.; Hamel, E.; Hanson, A. D.; Agoston, G. E.; Cushman, M. J. Med. Chem. 2004, 47, 5126. (b) Ciana, C.-L.; Phipps, R. J.; Brandt, J. R.; Meyer, F.-M.; Gaunt, M. J. Angew. Chem., Int. Ed. 2011, 50, 458. (c) Zhou, C.-Y.; Li, J.; Peddibhotla, S.; Romo, D. Org. Lett. 2010, 12, 2104.

(22) (a) Schreiber, S. L. *Nature* **2009**, 457, 153. (b) Galloway, W. R. J. D.; Spring, D. R. *Nature* **2011**, 470, 43.